Compare commits
3 commits
fec35bf96f
...
7f920c01ad
Author | SHA1 | Date | |
---|---|---|---|
7f920c01ad | |||
e72cc8914f | |||
924ae2d359 |
3 changed files with 163 additions and 46 deletions
|
@ -3,6 +3,46 @@ import rehype_katex from 'rehype-katex';
|
|||
import katex from 'katex';
|
||||
import visit from 'unist-util-visit';
|
||||
|
||||
const gruvboxColorMap = {
|
||||
red: '#fb4934',
|
||||
green: '#98971a',
|
||||
yellow: '#fabd2f',
|
||||
blue: '#458588',
|
||||
purple: '#d3869b',
|
||||
cyan: '#8ec07c',
|
||||
orange: '#fe8019',
|
||||
black: '#282828',
|
||||
white: '#ebdbb2',
|
||||
gray: '#a89984'
|
||||
};
|
||||
|
||||
const override_katex_colors = () => (tree) => {
|
||||
visit(tree, 'element', (node) => {
|
||||
if (node.tagName === 'span' && node.properties?.className?.includes('katex')) {
|
||||
removeInlineColors(node);
|
||||
}
|
||||
});
|
||||
};
|
||||
|
||||
function removeInlineColors(node) {
|
||||
if (node.properties?.style && typeof node.properties.style === 'string') {
|
||||
// Split style string into individual declarations
|
||||
const styles = node.properties.style.split(';').map(s => s.trim()).filter(Boolean);
|
||||
const newStyles = styles.map(style => {
|
||||
const [key, value] = style.split(':').map(s => s.trim());
|
||||
if (key === 'color' && gruvboxColorMap[value]) {
|
||||
return `color: ${gruvboxColorMap[value]}`;
|
||||
}
|
||||
return `${key}: ${value}`;
|
||||
});
|
||||
node.properties.style = newStyles.join('; ');
|
||||
}
|
||||
|
||||
if (node.children) {
|
||||
node.children.forEach(removeInlineColors);
|
||||
}
|
||||
}
|
||||
|
||||
const correct_hast_tree = () => (tree) => {
|
||||
visit(tree, 'text', (node) => {
|
||||
if (node.value.trim().startsWith('<')) {
|
||||
|
@ -14,7 +54,7 @@ const correct_hast_tree = () => (tree) => {
|
|||
const katex_blocks = () => (tree) => {
|
||||
visit(tree, 'code', (node) => {
|
||||
if (node.lang === 'math') {
|
||||
const str = katex.renderToString(node.value, {
|
||||
let str = katex.renderToString(node.value, {
|
||||
displayMode: true,
|
||||
leqno: false,
|
||||
fleqn: false,
|
||||
|
@ -23,9 +63,16 @@ const katex_blocks = () => (tree) => {
|
|||
strict: 'warn',
|
||||
output: 'htmlAndMathml',
|
||||
trust: false,
|
||||
macros: { '\\f': '#1f(#2)' }
|
||||
macros: {
|
||||
'\\f': '#1f(#2)'
|
||||
}
|
||||
});
|
||||
|
||||
for (const [name, gruvColor] of Object.entries(gruvboxColorMap)) {
|
||||
const regex = new RegExp(`(style="[^"]*)color:\\s*${name}\\b`, 'g');
|
||||
str = str.replace(regex, `$1color: ${gruvColor}`);
|
||||
}
|
||||
|
||||
node.type = 'raw';
|
||||
node.value = '{@html `' + str + '`}';
|
||||
}
|
||||
|
@ -34,12 +81,12 @@ const katex_blocks = () => (tree) => {
|
|||
|
||||
export const mdsvex_config = {
|
||||
extensions: ['.md', '.svx'],
|
||||
layout: "./src/routes/articles/Layout.svelte",
|
||||
layout: './src/routes/articles/Layout.svelte',
|
||||
|
||||
smartypants: {
|
||||
dashes: 'oldschool'
|
||||
},
|
||||
|
||||
remarkPlugins: [math, katex_blocks],
|
||||
rehypePlugins: [correct_hast_tree, rehype_katex]
|
||||
rehypePlugins: [correct_hast_tree, rehype_katex, override_katex_colors]
|
||||
};
|
||||
|
|
|
@ -11,11 +11,11 @@
|
|||
.tooltip {
|
||||
position: relative;
|
||||
display: inline-block;
|
||||
|
||||
font-weight: 600;
|
||||
font-style: italic;
|
||||
color: #fabd2f;
|
||||
border-bottom: 1px dotted #fe8019;
|
||||
|
||||
font-weight: 600;
|
||||
font-style: italic;
|
||||
color: #fabd2f;
|
||||
border-bottom: 1px dotted #fe8019;
|
||||
}
|
||||
|
||||
/* Tooltip text */
|
||||
|
@ -25,14 +25,14 @@
|
|||
max-width: 60ch;
|
||||
min-width: 60ch;
|
||||
margin-left: -30ch; /* Use half of the width (120/2 = 60), to center the tooltip */
|
||||
margin-top: .5em;
|
||||
margin-top: 0.5em;
|
||||
|
||||
background-color: #282828ea;
|
||||
background-color: #282828f5;
|
||||
text-wrap-mode: wrap;
|
||||
text-align: justify;
|
||||
padding: 1em;
|
||||
padding: 1em;
|
||||
border-radius: 6px;
|
||||
border: 1px solid #fe8019;
|
||||
border: 1px solid #fe8019;
|
||||
|
||||
top: 100%;
|
||||
left: 50%;
|
||||
|
@ -47,7 +47,7 @@
|
|||
visibility: visible;
|
||||
}
|
||||
|
||||
.tooltip:hover {
|
||||
color: #fe8019;
|
||||
}
|
||||
.tooltip:hover {
|
||||
color: #fe8019;
|
||||
}
|
||||
</style>
|
||||
|
|
|
@ -8,7 +8,10 @@ import Image from "../../Image.svelte"
|
|||
import Note from "../../Note.svelte"
|
||||
import Tip from "../../Tip.svelte"
|
||||
|
||||
let i, red,j,green;
|
||||
let a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z;
|
||||
let A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z;
|
||||
let red, green, yellow, blue, purple, cyan, orange, black, white, gray, color;
|
||||
|
||||
</script>
|
||||
|
||||
Ever wondered how games put all that gore on your display? All that beauty is brought into life by
|
||||
|
@ -27,7 +30,7 @@ But why exactly **4-parts**?
|
|||
|
||||
Like any pipeline, the **graphics pipeline** is made up of several **stages**,
|
||||
each of which can be a mini-pipeline in itself or even parallelized.
|
||||
Each stage takes some input (data and configuration) to generate some output data for the next stage.
|
||||
Each stage takes some **input** (data and configuration) to generate some **output** data for the next stage.
|
||||
|
||||
<Note title="High level breakdown of the graphics pipeline", type="diagram">
|
||||
|
||||
|
@ -465,7 +468,7 @@ your time** :)
|
|||
|
||||
## Linear Algebra --- Vectors
|
||||
|
||||
**Vectors** are the **fundamental** building blocks of the linear algebra. And we're going to get
|
||||
**Vectors** are the **fundamental** building blocks of **linear algebra**. And we're going to get
|
||||
really familiar with them :) But what is a **vector** anyways? As all things in life, it depends.
|
||||
|
||||
For a **physicist**, vectors are **arrows pointing in space**, and what defines them is their **length** (or **magnitude**)
|
||||
|
@ -490,38 +493,114 @@ to be in the simple world of a computer scientist:
|
|||
But **mathematically** speaking, vectors are a lot more **abstract**.
|
||||
Virtually **any** representation of **vectors** (which is called a **vector-space**) is valid as long as they follow a set of **axioms**.
|
||||
It doesn't matter if you think of them as **arrows in space** that happen to have a **numeric representation**,
|
||||
or as a **list of numbers** that happen to have a cute **geometric interpretation** (or even certain mathmatical **functions**).
|
||||
As long the [aximos of vector spaces](https://www.math.ucla.edu/~tao/resource/general/121.1.00s/vector_axioms.html) apply to them, they're vectors.
|
||||
or as a **list of numbers** that happen to have a cute **geometric interpretation**.
|
||||
As long the <Tip text="axioms of vector spaces"> <p>A **real vector space** is a set X with a special element 0, and three operations
|
||||
|
||||
However, we won't go into such axioms as we're not interested in **abstract** thinking here.
|
||||
We're aiming to do something **concrete** like **linear transformations** of a set of vertices (models).
|
||||
- **Addition**: Given two elements x, y in X, one can form the sum x+y, which is also an element of X.
|
||||
|
||||
- **Inverse**: Given an element x in X, one can form the inverse -x, which is also an element of X.
|
||||
|
||||
- **Scalar multiplication**: Given an element x in X and a real number c, one can form the product cx, which is also an element of X.
|
||||
|
||||
These operations must satisfy the following axioms:
|
||||
|
||||
* **Additive axioms**. For every x,y,z in X, we have
|
||||
- x+y = y+x.
|
||||
- (x+y)+z = x+(y+z).
|
||||
- 0+x = x+0 = x.
|
||||
- (-x) + x = x + (-x) = 0.
|
||||
|
||||
* **Multiplicative axioms**. For every x in X and real numbers c,d, we have
|
||||
- 0x = 0
|
||||
- 1x = x
|
||||
- (cd)x = c(dx)
|
||||
|
||||
* **Distributive axioms**. For every x,y in X and real numbers c,d, we have
|
||||
- c(x+y) = cx + cy.
|
||||
- (c+d)x = cx +dx.
|
||||
|
||||
|
||||
[source](https://www.math.ucla.edu/~tao/resource/general/121.1.00s/vector_axioms.html)
|
||||
|
||||
</Tip> apply to them, they're vectors.
|
||||
|
||||
<Note type="math", title="Mathmatician">
|
||||
|
||||
<br/>
|
||||
<br/>
|
||||
|
||||
```math
|
||||
\bar{v} = \begin{pmatrix} \color{red}x \\ \color{green}y \\ \color{blue}z \\ \vdots \end{pmatrix}
|
||||
```
|
||||
|
||||
</Note>
|
||||
|
||||
From such **abstraction**, we achieve **generalization**. Instead of solving a specific problem, mathematicians provide us tools (operations)
|
||||
that can be useful in many fields. However! we won't go into such axioms as we're not interested in **abstract** thinking here.
|
||||
We're aiming to do something **concrete** **linear transformation** of a set of vertices (models).
|
||||
So it would be ideal for us to think of them like this:
|
||||
|
||||
- A vector describes a series of steps to perform a **transformation** in space.
|
||||
- A vector has the properties: **direction** and **magntitude**.
|
||||
- If its **magntitude** is exactly **1**, then it describes a **direction** in space and is called a **unit vector**.
|
||||
- A vector describes a series of steps for performing a **transformation** in space.
|
||||
- A vector has 2 properties: **direction** and **magntitude**.
|
||||
- If its **magntitude** is exactly **1**, then it only describes a **direction** in space and is called a **unit vector**.
|
||||
|
||||
Let's go over these points one by one.
|
||||
Let's go over these points one by one. We'll focus mostly on **2-dimensional** vectors for simplicity and easier
|
||||
visualization, but same principles easily extend to **3-dimensions**.
|
||||
|
||||
**Basis Vector**
|
||||
Given the vector $\bar{V}$; the first element ($\color{red}\bar{V}_{x}$) tells us how much to move **horizontally**---along the $\color{red}x$-axis;
|
||||
and the second element ($\color{green}\bar{V}_{y}$) tells us how much to move **vertically**---along the $\color{green}y$-axis:
|
||||
|
||||
<Note type="image", title="">
|
||||
|
||||
**Insert image here**
|
||||
|
||||
$\color{red}\bar{V}_{x}$: move $-5$ units parallel to the $\color{red}x$-axis (left)
|
||||
|
||||
$\color{green}\bar{V}_{y}$: move $+3$ units parallel to the $\color{green}y$-axis (up)
|
||||
|
||||
</Note>
|
||||
|
||||
As you can see, it's just elementary school number line, but extended into a higher dimension; very simple.
|
||||
|
||||
If you paid close attention, you can see that there's an imaginary **triangle** formed there! $\color{red}\bar{V}_{x}$ as the **adjacent** side,
|
||||
$\color{green}\bar{V}_{y}$ as the **oppoosite** side and the $\bar{V}$ itself as the **hypotenuse**.
|
||||
<Note type="image", title="">
|
||||
|
||||
**Insert image here**
|
||||
|
||||
</Note>
|
||||
|
||||
And if you're clever enough, you've already figured out how to calculate the **length** of $\bar{V}$!
|
||||
Using the **pythagorean theorem**, we can calculate it like so:
|
||||
|
||||
<Note type="math", title="">
|
||||
|
||||
```math
|
||||
\Vert\bar{V}\Vert = \sqrt{\color{red}x^2 \color{white}+ \color{green}y^2} \color{white}= \sqrt{\color{red}(-5)^2 \color{white}+ \color{green}(3)^2} \color{white}\approx5.83
|
||||
```
|
||||
|
||||
And if $\bar{V}$ is 3-dimensional:
|
||||
|
||||
```math
|
||||
\Vert\bar{V}\Vert = \sqrt{\color{red}x^2 \color{white}+ \color{green}y^2 \color{white}+ \color{blue}z^2}
|
||||
```
|
||||
|
||||
</Note>
|
||||
|
||||
**Additions**
|
||||
|
||||
**Multiplication**
|
||||
|
||||
**Scalar Operations**
|
||||
|
||||
**Cross Product**
|
||||
**Multiplication --- Cross Product**
|
||||
|
||||
**Dot Product**
|
||||
**Multiplication --- Dot Product**
|
||||
There's another piece of information we can extract using **trigonometry**.
|
||||
|
||||
The **length** of the vector isn't the only thing we can get from **trigonometry**. We can also
|
||||
**compare** the **directions** of two vectors. But this needs a bit of explaination.
|
||||
|
||||
Imagine two vectors: the $\color{red}\hat{i}$ and the $\color{green}\hat{j}$
|
||||
|
||||
|
||||
|
||||
Let's discuss **scalar** operations. A **scalar** is a number that **scales** the vector by itself.
|
||||
Most often we're only interested in doing **multiplication** (denoted by $\cdot$ symbol). Yet the other 3 operatoins (/, +, -) are also defined
|
||||
for **scalars**. Here are two examples:
|
||||
|
@ -543,11 +622,8 @@ Subtraction
|
|||
|
||||
<Note title="The Essence of Linear Algebra">
|
||||
|
||||
A **visual** and very **intuitive** explaination of these concepts is beyond the scope of this article.
|
||||
If you're interested in **mathematics** (bet you are) and **visualization**,
|
||||
then I highly recommend watching the [Essence of Linear Algebra](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab)
|
||||
by **3Blue1Brown**.
|
||||
His math series can give you a great intuitive understanding using very smooth visuals.
|
||||
If you're interested in **mathematics** (bet you are) and **visualization**, then I highly recommend watching the [Essence of Linear Algebra](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab)
|
||||
by **3Blue1Brown**. His math series gives you great intuitive understanding of linear algebra.
|
||||
And much of my own understanding comes from this series---and the other sources references at the end.
|
||||
|
||||
</Note>
|
||||
|
@ -564,7 +640,7 @@ And much of my own understanding comes from this series---and the other sources
|
|||
|
||||
**Division (or lack there of)**
|
||||
|
||||
**Identity Matrix**
|
||||
**Identity Matrix & Basis Vectors**
|
||||
|
||||
## Linear Algebra --- Transformations
|
||||
|
||||
|
@ -589,12 +665,6 @@ I've left links at the end of this article for further study.
|
|||
|
||||
**Translation**
|
||||
|
||||
<Note type="info", title="Homogeneous coordinates">
|
||||
|
||||
Why are we using 4D matrixes for vertices that are three dimensional?
|
||||
|
||||
</Note>
|
||||
|
||||
**Embedding it all in one matrix**
|
||||
|
||||
Great! You've refreshed on lots of cool mathematics today, let's get back to the original discussion.
|
||||
|
|
Loading…
Add table
Reference in a new issue